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Abstract: : In this study, the solution procedure of Linear Fractional Time Minimizing Transportation Problem with Impurities 
(LFTMTPI) in the commodity to generate total transportation solution schedules, is going to be presented. This LFTMTPI is 
related to a lexicographic linear fractional time minimizing transportation problem with impurities. The partial flows constituting 
a feasible transportation schedule may be partitioned according to the actual and standard transportation time involved. An 
LFTMTPI algorithm is also presented to solve such real life fractional decision priority problems. This algorithm takes into 
account the special structure of the problem due to impurities in the commodity and depends heavily on the optimality conditions. 
The optimality conditions reflects nothing else than dual feasibility.  
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I. Introduction 

Time minimizing transportation problem is required 

to find a feasible transportation schedule which 

minimizes the maximum of transportation time 

associated between a supply point and a demand 

point such that the distribution between the two 

points is positive. The time transportation problem is 

relevant in a variety of real life transportation 

situations e.g. Military transportation during war and 

emergencies, transportation of perishable goods, 

transportation in emergency situations. Khanna, 
Bakhshi and Arora [6] studied a time transportation 

problem, wherein there was a restriction on the total 

flow. Nikolic [1] demonstrated the total 

transportation time problem regarding the time of the 

active transportation routes. According to the author 

if the multiple optimal solutions exist, it was possible 

to include other criteria as second level of criteria and 

find the corresponding solutions. Sonia and Puri [7] 

considered a two level hierarchical balanced time 

minimizing transportation problem.  

Transportation problems with fractional objective 

function are widely used as performance measures in 
many real life situations e.g., in the analysis of 

financial aspects of transportation enterprises and 

undertaking and in transportation management situations, 

where an individual, or a group of community is faced 

with the problem of maintaining good ratios between some 

very important crucial parameters concerned with the 

transportation of commodities from certain sources to 

various destinations. Sharma and Swarup [2] presented a 

transportation technique for time minimization in 

fractional functional programming problem with an 

objective function. Swarup [3] studied a transportation 
technique for linear fractional functional programming 

problem. Kanchan, Holland and Sahney [4] investigated 

transportation techniques in linear plus linear fractional 

programming having special structured objective function. 

In all Transportation Models it is assumed that the 

commodity is identical irrespective of its source and that 

the consumers have no preference relating to its supply 

point. However in many real life transportation situations 

in industries of coal, iron, cement etc., the commodity does 

vary in some characteristics according to its source and the 

final commodity mixture reaching the various destinations, 

may then be required to meet known specifications.  
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In this paper, to generate total transportation solution schedules, an algorithm is presented to solve linear 

fractional time minimizing transportation problem with impurities where the commodity can have 

different types of impurities, by relating it to a lexicographic linear fractional time minimizing 
transportation problem with impurities. This algorithm takes into account the special structure of the 

problem and depends heavily on the optimality conditions. The developed algorithm is also supported by 

a real life example of crude-ore transportation problem of Steel Authority of India Limited.  
 

1. Mathematical Formulation 

The LFTMTPI can be formulated as:  
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where 
i

a  is the quantity of the commodity available at the 
thi  source and jb  is the quantity of 

commodity required at the 
thj  destination. One unit of the commodity contains ijkf  units of P  

impurities ( )Pk ,,2,1 K=  when it is sent from the 
thi  source to the 

thj  destination. Customer j  cannot 

receive more than jkq  units of impurity k  and ijx  is the amount of the commodity transported from the 

thi  source to the 
thj  destination, ][ a

ij

a tT =  and ][ s
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s tT =  are two )( NM ×  time matrices where 
a

ijt  is 

the actual transportation time for transporting 0>ijx  units from the 
thi  source to the 

thj destination and 

s

ijt  is the standard transportation time for transporting 0>ijx  units from the  
thi  source to the 

thj destination. 
s

ij

a

ij tt  is proportional contribution to the value of the fractional time objective function 

for shipping one unit of commodity from the 
thi source to the 

thj  destination, and is independent of the 

amount of commodity for 0>ijx  and t   is fractional transportation time. 
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It is assumed that 0>
i

a , Mi ′∈ ; 0>jb , Nj ′∈ , and the consistency condition for the existence of 

the solution to the problem is ∑∑
′∈′∈

=
Nj

j

Mi

i ba . 

2. Lexicographic Linear Fractional Time Minimizing Transportation Problem with Impurities 
If the transportation system decision maker decides to minimize the fractional time objective function of 

the LFTMTPI, this concept may be represented by a vector-valued fractional objective function which is 

to be minimized lexicographically. The LFTMTPI can be easily formulated as a Lexicographic Linear 

Fractional Time Minimizing Transportation Problem with Impurities (LLFTMTPI): 
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with   [ ]cij e=:α , ( ) a

cji ξ∈, , ( )gc ,,2,1 K=      

and   [ ]dij e=:β , ( ) s

dji ξ∈, , ( )hgd ,,1K+=    

here 
hIR, ∈ijij βα ,

h
IR  be the set of real numbers. 

Following the usual method of solution, the first stage is to introduce slack variables jkMx ,+  into the 

impurities: 

jkjkM

i

ijijk qxxf =+ +∑ ,                      (7) 

                                         0, ≥+ jkMx                                   

(8) 

There are a total of NPMN +  variables including slacks and NMNP ++  equations. Because of the 

conditions imposed on the ia and the jb , one of the equations (2) and (3) is dependent and so a basic 

feasible solution contains 1−++ NMNP  basic variables. 

 

3. Vector-valued Dual Variables and Optimality Conditions  

Consider the vector-valued dual variables 
21 , ii uu , )( Mi ′∈ ; 
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Also, let 









++−=′ ∑

′∈Pk

ijkjkjiijij fwvu
111αα                                                (9) 

             







++−=′ ∑

′∈Pk

ijkjkjiijij fwvu
222ββ                                            (10) 

These vector-valued dual variables ,, 21

ii uu ,, 21

jj vv  
21 , jkjk ww  can be obtained and then for non-basic 

variables, ijα ′ , ijβ ′  can be determined by the relations (9) and (10). 

 

Now, in order to derive the optimality conditions, the fractional objective function ℑ  of LLFTMTPI in 

equation (6) is expressed in terms of the non-basic variables.  

Let 

B

A

x

x

Jji

ijij

Jji

ijij

==ℑ
∑

∑

′∈

′∈

),(

),(

β

α

                                  (11) 

then 

∑ ∑∑ ∑ ∑∑
′∈ ′∈′∈ ′∈ ′∈′∈









−+










−+=

Nj Mi

ijjj

Mi Mi Nj

ijii

Nj

ijij xbvxauxA
11α       

   ∑∑ ∑
′∈ ′∈

+
′∈









−−+

Nj Pk

jkM

Mi

ijijkjkjk xxfqw ,

1
               

or  

∑∑ ∑∑ ∑ ∑∑
′∈ ′∈ ′∈′∈ ′∈ ′∈ ′∈

















++−+








++=

Mi Nj

ij

Pk

ijkjkjiij

Mi Nj Nj Pk

jkjkjjii xfwvuqwbvauA 111111 α  

          ∑∑
′∈ ′∈

+−
Nj Pk

jkMjk xw ,

1
 

giving   

  







+−′= ∑∑

∈
+

∈
1

),(

,

1

),( 1

VxwxA
Gkj

jkMjk

Gji

ijij
α                 

 

where ∑
∈Gji ),(

and ∑
∈ 1),( Gkj

denote the summation extending over the set of non-basic variables ijx  and 

jkMx ,+  respectively, and 

         







++= ∑∑∑∑

′∈ ′∈′∈′∈ Nj Pk

jkjk

Nj

jj

Mi

ii qwbvauV 111

1
               

Similarly 

                  
( )









+−′= ∑ ∑

∈ ∈
+

Gji Gkj

jkMjkijij VxwxB
,

2

),(

,

2

1

β ,  







++= ∑∑∑ ∑

′∈ ′∈′∈ ′∈ Nj Pk

jkjk

Mi Nj

jjii qwbvauV
222

2
          

             
Therefore, the objective function (11) becomes 



     11 

Madhuri : Linear Fractional Time Minimizing Transportation ... 

         

( ) 

















+−′

+−′

==ℑ

∑∑

∑∑

∈
+

∈

∈
+

∈

2

),(

,

2

,

1

),(

,

1

),(

1

1

Vxwx

Vxwx

B

A

Gkj

jkMjk

Gji

ijij

Gkj

jkMjk

Gji

ijij

β

α

                                 

(12) 

Differentiating ℑ   with respect to the non-basic variable ijx  ( ji, ranging over the set G ),  
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4. Altering a Basic Feasible Solution  
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If a basic feasible solution is to be updated by the introduction of a non-basic variable and the removal of 

a basic one, then alterations can only be made to the basic variables. To determine the incoming variable, 

select the minimum 
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one of the variables is reduced to zero while the others remain positive and a new updated basic feasible 

solution is obtained. 
 

5. Change in Time Vectors  
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Since 01 =jkw , for those kj, for which jkMx ,+  is in the basis and 0, =+ jkMδ , for those kj,  for which 

jkMx ,+  is not in the basis. 
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Since 01 =jkw , for those kj,  for which jkMx ,+  is in the basis and 0, =+ jkMδ , for those kj,  for which 

jkMx ,+  is not in the basis (expect for 1,1+Mx ) . 

 

Similarly to show that the method of altering the solution is valid, consider the introduction of 11x  and the 
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6. Algorithm  
The steps of algorithm, to generate optimal total transportation solution schedules for LFTMTPI in a 

finite number of iterations, are: 

Step 1: Determine the lower bound 
a

l
t on 

a
t  to reduce the dimension of the vector ijα  and lower 

bound 
s

l
t on 

st  to reduce the dimension of the vector ijβ .   

Step 2: Determine an initial basic feasible solution 
1

X  by using method of Saxena [5]. 

Step 3: From the resulting transportation time 
a

t  and 
st of the initial basic feasible solution 

1
X , 

determine an upper bound 
a

U
t  and 

s

U
t . 

Step 4: Partition the set NMa ×=:ξ  and NMs ×=:ξ  into subset 
a

c
ξ  and 

s

d
ξ , 

( )hgdgc ,,1;,,1 KK +==  respectively and determine the vectors. With the help of vectors 

][: cij e=α  and ][: dij e=β , obtain the fractional transportation time matrix T. 

Step 5: Designate the set of pairs of indices ),( ji  of the basic variable by I and using initial basic 

feasible solution compute recursively the associated vector-valued multipliers ,, 21
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uu  ,, 21

jj vv  
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IJji \),( ′∈ , the current basic feasible solution is optimal to LLFTMTPI.  Go to Step 10, 
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7. Crude-Ore Transportation Problem 
The developed algorithm for determining the optimal total transportation solution schedules for the crude-

ore transportation problem can be illustrated by considering the following example of SAIL:  

SAIL has different type of furnace in each of six work centers )( j , situated in Bhilai, Durgapur, 

Rourkela, Burnpur, Salem and Bhadravati in India.   The work centers must receive a fixed weight of 

crude ore )(i  which is available in six different grades. For technical reasons the processing time of crude 

ore depends on its grades and the work centers to which it is sent. 
 

The problem is to generate total transportation solution schedules which minimizes the total fractional 

transportation-processing time t  of transporting crude ore while satisfying the extra requirement that the 

amount of phosphorus is less than a certain critical level. In Table 1, the total fractional transportation-
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thi  source to 
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destination are displayed. 
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25:4

40:5

 







20:4

35:5

 
11 0.8 

 

3 







20:4

15:5
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5 0.4 
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20:5
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25:4
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00:6

 









35:4

10:5

 









05:4

35:5

 







20:4

25:5

 







25:4

35:5

 
3 0.4 

Tons 

Reqd. jb  

 

7 

 

10 

 

9 

 

4 

 

1 

 

3 

 

Max 

Phos. jL  

 

0.7 

 

0.7 

 

0.7 

 

0.7 

 

0.7 

 

0.7 

 

Table 1: Total Fractional Transportation-processing Time 

 

The initial basic feasible solution 
1

X  is:  

4,3,10,2,21,1.,2,1

,5,
2

5
,

2

11
,

2

7
,

2

15
,

2

1
,1,

2

5
,2

7675747371656454

413633232216141211

========

=========

xxxxxxxx

xxxxxxxxx
 

The lower and upper bounds are:  
a

lt = 5.58, 
s

lt = 4.33, 
a

Ut = 5.67, 
s

Ut = 4.42 

Hence g = 4 and h = 4 so 
aξ and 

sξ has four subsets: 

( ){ }67.5,:1 >∈= a

ij

aa
tji ξξ ,  ( ){ }67.5,:2 =∈= a

ij

aa
tji ξξ , 

( ){ }58.5,:3 =∈= a

ij

aa
tji ξξ ,  ( ){ }58.5,:4 <∈= a

ij

aa
tji ξξ , 

and  ( ){ }42.4,:5 >∈= s

ij

ss
tji ξξ ,  ( ){ }42.4,:6 =∈= s

ij

ss
tji ξξ , 

( ){ }33.4,:7 =∈= s

ij

ss
tji ξξ ,  ( ){ }33.4,:8 <∈= s

ij

ss
tji ξξ , 

The fractional transportation-processing time matrix T of the following related lexicographic linear 
fractional time minimizing crude-ore transportation problem:  
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lexmin  
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==

==

=ℑ

∑

∑

∑

∑∑

∑∑

=

=

=

= =

= =

0

.

)6,,2,1(,

)6,,2,1(,

6

1

6

1

6

1

6

1

6

1

6

1

6

1

ij

i

jjiji

j

i

ij

i

j

ij

i j

ijij

i j

ijij

x

bLxp

jbx

iax

x

x
K

K

β

α    

can be written as: 
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7
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3
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6

2

5

3

7

4

5

4

6

2

8

2

6

4

7

3

7

3

6

3

7

4

7

3

6

2

6

4

6

3

7

4

6

1

6

3

5

1

7

4

6

3

7

4

6

3

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e
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e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

T

 

Using initial basic feasible solution
1

X , the vector-valued multipliers ,, 21

ii uu  
21 , jj vv  and 

21 , jkjk ww  

;6,,2,1( K=i ;6,,2,1 K=j )1=k  are calculated as explained in Step 5 and then relative criterion 

vectors ij∆  and jkM ,+∆  are computed. The flow vector )( 1Xℑ = (0,5/2,0,2,0,0,1,11/2,5,0,12,6,0,0,0,0)
T
 

indicates that fractional transportation-processing time = 1.334 and bottleneck flow = 5/2. As ij∆  and 

jkM ,+∆  are not lexicographically greater than or equal to zero vector, therefore applying the selection rule 

of equation (13), the variable 42x  becomes an entering basic variable and so 42δ  is added to this variable 

and RSδ , SYM ,+δ  is added to all the basic variables RSx , SYMx ,+ . Change the current basic feasible 

solution to the new basic feasible solution using equations (14)-(17). 

The new basic feasible solution 
2

X  is:  

=2
X

















20

0

0

2/1

2/1

0

6

K

 

0

0

0

2/5

0

2/15

0

K

 

2

0

0

0

2/11

2/7

0

K

 

12

2

0

2

0

0

0

K

 

3

1

0

0

0

0

0

K

 

















3

0

1

0

2

0

0

K

  

Fractional Transportation-processing Time: 1.334.  Bottleneck Flow: 2. 
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As all the values of ij∆  and jkM ,+∆  are not lexicographically greater than or equal to the zero vector, the 

current basic feasible solution is not optimal. Proceeding in the manner describes above, the further 

solutions are:   

=3
X
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Fractional Transportation-processing Time: 1.334.  Bottleneck Flow: 3/2. 
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Fractional Transportation-processing Time: 1.313.  Bottleneck Flow: 3/2. 
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0
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Fractional Transportation-processing Time: 1.289.  Bottleneck Flow: 29/4. 
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Fractional Transportation-processing Time: 1.289.  Bottleneck Flow: 7 
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Fractional Transportation-processing Time: 1.289.  Bottleneck Flow: 6 
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Fractional Transportation-processing Time: 1.289.  Bottleneck Flow: 7/2 
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Fractional Transportation-processing Time: 1.289.  Bottleneck Flow: 7/4 
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=10
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3
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0

0

0
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3

1
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1

0

0

0

1

0

0

K

 

















7

0

1

0

0

0

2

K

 

The feasible solution 
10

X  is optimal to lexicographic linear fractional time minimizing crude-ore 
transportation problem having optimal total transportation solution schedules with optimal fractional 

transportation-processing time = 1.270 and bottleneck flow = 13. 

 

8. Concluding Remarks  

An algorithm has been developed in this paper for solving linear fractional time minimizing transportation 
problems with impurities. The algorithm minimizes the vector of partial flows in a lexicographic order on 

the feasible set. This lexicographic approach based algorithm will prove to be useful for transportation 

system decision makers to solve fractional decision priority problems for management of transportation 

system.  
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